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Powerful ITG/TEM must become weak to 
have a Transport Barrrier (TB)

• ITG/TEM must be 

• There exist regimes where this occurs without velocity shear 

• A new Analysis within the framework of Constrained statistical mechanics shows the 
WHY? 

TB’s can arise because a fundamental constraint prevents the dynamics from accessing 
the enormous gradient free energy  

• New theoretical concepts demonstrated by extensive gyrokinetic simulations

• Some present experiments are in this regime, future ones likely have to be    

The constrained Stat-Mech approach reveals connections to basic physical dynamics, 
and “universal” behaviors, that are not evident in the usual dispersion relations

JT-60U ITB DIII-D pedestal

JET-ILW pedestals
W7X core

profiles



Turbulent transport in TBs BEHAVES EXACTLY THE OPPOSITE to a TRULY VAST 
VARIETY of physical systems outside of magnetic confinement, where:

In TBs, higher gradients DO NOT lead to higher turbulent fluxes-
often, in fact, the opposite

Given the truly huge weight of physical systems that behave the 
“usual” way, we are compelled to ask:

What exceptional process operates in TBs in magnetically confined 
plasmas? (Specifically, when velocity shear is not crucial.)

TBs are a HUGE puzzle from a general statistical mechanics 
perspective (many degree of freedom systems like gyrokinetics)

2D contour plot of
TB gyrokinetic simulation dn
(the full 5D phase space is far 
more complex with far more 

degrees of freedom)

Increasing some gradient (a “thermodynamic force”) 
Increases thermodynamc relaxation rate (the corresonding 

“thermodynamic flux”)



1)  Classic free energy considerations
• Just as in a VAST variety physical systems, as mentioned above

2) A dynamical constraint specific to magnetized plasmas:

All gyrokinetic fluctuations cannot lead to a net charge flux
(to lowest order in the gyrokinetic expansion, transport is “intrinsically
ambiploar”)

The answer: the properties of the ITG/TEM arise from 
the simultaneous action of TWO fundamental dynamics

• These two dynamics arise from VERY different physics 
(their physical origins are “orthogonal”, so to speak)

Free
Energy

Dynamical 
constraint



• THIS IS VERY GENERAL, BASIC, STATISTICAL MECHANICS
• Instabilities are a way to literally transfer the free energy in 

equilibrium gradients into their fluctuations, causing them to grow
• Gyrokinetics has a so-called “entropy” or “free energy ” equation to 

describe this (discussed by many, most recently Helander PRL 2021) 

In a bit more detail:

Classic free energy considerations



• THIS IS VERY GENERAL, BASIC, STATISTICAL MECHANICS
• Instabilities are a way to literally transfer the free energy in 

equilibrium gradients into their fluctuations, causing them to grow
• Gyrokinetics has a so-called “entropy” or “free energy ” equation to 

describe this (discussed by many, most recently Helander PRL 2021) 

• Free energy considerations are the basis of the familiar critical 
dT/dx of ITG: the gradient must have sufficient free energy to 
allow growth

• From this fundamental equation, it would appear that stronger 
gradients should produce higher instability growth rates- the “usual” 
behavior

In a bit more detail:

Classic free energy considerations
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• THIS IS VERY GENERAL, BASIC, STATISTICAL MECHANICS
• Instabilities are a way to literally transfer the free energy in 

equilibrium gradients into their fluctuations, causing them to grow
• Gyrokinetics has a so-called “entropy” or “free energy ” equation to 

describe this (discussed by many, most recently Helander PRL 2021) 

• Example: this is the basis of critical dT/dx of ITG- the gradient 
must be strong enough to transfer sufficient free energy to 
fluctuations to enable growth

• From this fundamental equation, it would seem: 
stronger gradients “should” produce higher instability growth rates-

the “usual” behavior

In a bit more detail:

Classic free energy considerations
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Schematic of the 
(somewhat complicated)

free energy balance equation 
for gyrokinetics
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thermodynamic fluxes that relax  
their respective thermodynamic gradients:

Heat
flux

Particle
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• BUT a basic constraint from 
magnetized plasma physics can 
completely prevent the “usual 
behavior”....



• Gyrokinetic transport cannot lead to a net charge flux-
it’s “intrinsically ambipolar”
• Well known to be true to lowest order in gyrokinetic expansion 

(Waltz 1982, Kotschenreuther 1982, Helander 2008, Parra 2012, Parra 
and Catto 2013, Catto 2019, Kotschenreuther 2021)

• We’ll call this constraint the “Flux Constraint (FC)”

The dynamical constraint that must be satisfied for all gyrokinetic fluctuations:

!
#$%&'%#

𝑞#Γ# = 0

where:

Γ* is the charge flux 
from gyrokinetic 
fluctuations
𝑞! is the charge

• The physics behind this constraint is described by various 
authors as local frame invariance or local momentum 
conservation in a strongly magnetized plasma

• NOTE that this is TOTALLY different from the physical origin 
of free energy considerations



How does the Flux Constraint (FC) prevent strong ITG/TEM?

If the flux constraint is not soluble for g>0,
NO instability is possible

(and we’ll find nonlinear results follow the linear)

AND:
Analytic bounds on the flux constraint are ENORMOUSLY simpler to obtain than computing the full dynamics

We’ll obtain such bounds, and compare to simulations: it will be obvious that the FC can control the 
“thermodynamic relaxation” -heat flux, instability growth rate

Striking, “universal” behaviors are found in the simulations that are manifestations of the FC 

Of practical importance: the FC controls when weak instbailities are present despite steep gradients (e.g. TBs)



This is a qualitatively different WAY of understanding instabilites (and 
transport) than the usual dispersion relation approach

A dispersion relation combines all the physics

Here we are conciously trying to separate out the consequences from 
one particular aspect of the physics – the Flux Constraint

From a conceptual point of view:

Dispersion relations obviously do show modes can become stable

Dispersion relations don’t easily reveal when stability is a consequence of one particular part of the dynamics 
e.g., solubility of the FC 

E.g., ITG dispersion relations have been around for about 60 years without this being realized

In the dispesion relation approach, stability appears as a algebraic consequence, without a simple answer to:

WHY CAN’T THIS PHYSICAL SYSTEM WITH VERY MANY DEGREES OF FREEDOM FIND SOME WAY TO ACCESS 
STRONG FREE ENERGY LIKE MOST OTHER PHYSICAL SYSTEMS WITH MANY DEGREES OF FREEDOM? 

Here an answer is provided : there is NO growing fluctuation which satisfies a necessary and basic dynamical 
constraint, the FC, so free energy becomes inaccessible to the system



To obtain analytic results to compare to simulations, we use a simplification akin to one often 
used in statistical mechanics: mean field theory 

JT-60U ITB

DIII-D pedestal

• Mean field theory: the action on many similar degrees of freedom are treated as a single 
average quantity

• Our version: the Simplified Kinetic Model that replaces eigenfunctions with a few 
“eigenfunction averaged” quantities
• Specifically: < 𝑘∥> ,	< 𝑘# >,	< 𝜔$ >,	etc.
• In a TB-like limit of steep gradients, expressions for the averages are derivable
• SKiM was presented at a previous PPPL talk in Dec 2019 

• Even with these simplifications, the disperion relation for 𝜔, 𝛾 is far too 
complicated to solve analytically in general

But simple analytic results for the solubility of the FC can be obtained in important 
cases, checked against simulations, and they follow them!



To obtain analytic results to compare to simulations, we use a simplification akin to one often 
used in statistical mechanics: mean field theory 

JT-60U ITB

DIII-D pedestal

One result: Often the FC cannot be satisfied for a large enough density gradient

Such density gradients are often present in TBs and are crucial to creating weak 
ITG/TEM that make the TB possible

• Mean field theory: the action on many similar degrees of freedom are treated as a single 
average quantity

• Our version: the Simplified Kinetic Model that replaces eigenfunctions with a few 
“eigenfunction averaged” quantities
• Specifically: < 𝑘∥> ,	< 𝑘# >,	< 𝜔$ >,	etc.
• In a TB-like limit of steep gradients, expressions for the averages are derivable
• SKiM was presented at a previous PPPL talk in Dec 2019 

• Even with these simplifications, the disperion relation for 𝜔, 𝛾 is far too 
complicated to solve analytically in general

But simple analytic results for the solubility of the FC can be obtained in important 
cases, checked against simulations, and they follow them!



First analytic result: for the ITG with adiabatic electrons ( ITGae )
JT-60U ITB

Fraction of the density gradient
In the pressure gradient𝐹+ =

, ⁄!. !/
⁄! (.,) !/

=Define a normalized 
density gradient :

DIII-D pedestal𝑭𝒑 ≥ 𝟎. 𝟔The flux constraint for the ITGae cannot be satisfied if:

Contrast the simplicity of this criterion to the complexity of a 
dispersion relation that can’t be solved analytically!!

The profiles of many TBs 
satisfy such conditions 

from the FC:
these bounds are 

experimentally relevant

(related to the usual hi , but Fp will be more convenient)



Recall: flux constraint 
for the ITGae cannot be 
satisfied if:

Testing the analytic result with simulations in realistic geometry 
for ITG with adiabatic electrons ( ITGae ) 𝐹" ≥ 0.6

For various TB-like geometries and parameters, FIX a large ion Temperture gradient (R/LT ~ 10-80) 

and increase density gradient (R/Ln)

• Well known: with adiabatic electrons, density gradients can’t drive an instability, because the density 
gradient can’t be relaxed
• This is an example of a free energetic argument: free energy in density gradients is not accessible to 

instabilites with adiabatic electrons

Simulation procedure:  start with linear instabilites

BUT the constant dT/dx is always a strong free energy source in these simulations as dn/dx increases

There is no free energetic reason why the large temperature gradient can’t drive instabilites-
quit the contrary, strong instabilites would be expected to be present based upon typical behavior in other physical systems



• Previous expectation:
If some factor strongly affects the ITG growth rate,

it should affect the stability point for density gradients 
(the well known critcal hi or critical Fp )

Simulations find that this is almost completely untrue

• On the contrary, simulations results are the concrete manifestation of a basic physical 
fact:

The free energy equation is strongly affected by many factors that have no 
effect upon the upper bound for solubililty of the flux constraint 

Simulation results for ITGae demonstrate fundamental physics points 
(and are VERY surprising according to previous expectations)



• Simulations results are the concrete manifestation of a basic 
physical fact whose importance was unrecognized before now:

The free energy equation is strongly affected by many factors 
that have no effect upon the upper bound for solubililty of the 
flux constraint 

On the contrary, simulations show that it is important to distinguish between energetic 
effects and the solubility of the flux constraint

By inspection, for the ITGae
the respective equations are 
affected by these variables 

The free energy equation:
The absolute magnitude of the 
gradient ( R/LT)
The magnetic geometry
The ratio Ti/Te

Impurity content (~dilution of D)

The flux constraint bounds:
NONE OF THE THINGS ABOVE
Ratios of the gradients (Fp or h)
Impurity content (more strongly 
than the mere dilution effect above)



• Simulate temperature gradients R/TT far 
above marginal stability (3x to 25x)

• Increase the density gradient until stability

• Simulations: the critical Fp is always close to 
the analytic upper bound set by the flux 
constraint

Huge variations in the T gradient strongly affect 
the free energy equation, and hence the growth 
rate, but not the stability point in Fp

GENE simulation results for a typical core-like geometry 
Maximum growth rate among all kq

Analytic
bound

from the 
Flux

Constriant

R/LT = 80

R/LT = 40

R/LT = 20

R/LT = 10

Fp=normalized density gradient 
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Temperature gradients are kept fixed at R/LT values indicated 
Density gradient is increased until stability

The growth rate varies by ~ 10 x

But the critical Fp varies by  ~ 5%

1) Huge changes in the free energy drive have little effect on the FC solubility 
2) Systems with many degrees of freedon “find a way” to approach the “hard” FC limit rather closely

BUT DON’T GO BEYOND THE SOLUBILITY LIMIT



The critical Fp varies only ~ 5%
It is always very close to the analytical bound 

from the flux constraint 

The critical 𝑭𝒑 is clearly determined by the 
Flux Constraint

Huge variations in magnetic geometry don’t change the 
crtitical Fp, even though they greatly affect the critical dT/dr
Geometry strongly affects critical dT/dx via the 

free energy equation

• We simulate:
a) typical H-mode in the core
b) case with highly negative shear and Shafranov 

shift
c) Case with MUCH larger Shafranov shift
d) highly unstable L-mode

~ 270% variation in normalized dT/dx = R/LT crit

Maximum g among all kq
vs R/LT for geometries a-d

normalized dT/dx : R/LT →

Critical R/LT
varies 270%

d)

a)

b)
c)

Max g among all kq (for R/LT =20)
vs Fp for geometries a-d

Critical Fp
varies 5%

Fp = normalized density gradient

d)

a)
b)
c)

The same phyiscs considerations apply 
to stellarator geometries

• W7X (Max J)
• NCSX (Quasi sym)

Analytic
bound 

from FC

Maximum g among all kq vs Fp

Fp = normalized density gradient



Increasing the density gradient:

The critical Fp varies only ~ 5%

It is always very close to the analytical bound 
from the flux constraint 

The critical 𝑭𝒑 is clearly determined by the Flux 
Constraint

Huge variations in magnetic geometry don’t change the 
crtitical Fp, even though they greatly affect the critical dT/dr

• Geometry strongly affects critical dT/dx via the 
free energy equation

• We simulate:
a) typical H-mode in the core
b) case with highly negative shear and Shafranov 

shift
c) Case with MUCH larger Shafranov shift
d) highly unstable L-mode

~ 270% variation in normalized dT/dx = R/LT crit

Maximum g among all kq
vs R/LT for geometries a-d

normalized dT/dx : R/LT →

Critical R/LT
varies 270%

d)

a)

b)
c)

Max g among all kq (for R/LT =20)
vs Fp for geometries a-d

Critical Fp
varies 5%

Fp = normalized density gradient

d)

a)
b)
c)

The same phyiscs considerations apply 
to stellarator geometries

• W7X (Max J)
• NCSX (Quasi sym)

Analytic
bound 

from FC

Maximum g among all kq vs Fp

Fp = normalized density gradient



The critical Fp varies only ~ 5%
It is always very close to the analytical bound 

from the flux constraint 

The critical 𝑭𝒑 is clearly determined by the 
Flux Constraint

Huge variations in magnetic geometry don’t change the 
crtitical Fp, even though they greatly affect the critical dT/dr

• Geometry strongly affects critical dT/dx via the 
free energy equation

• We simulate:
a) typical H-mode in the core
b) case with highly negative shear and Shafranov 

shift
c) Case with MUCH larger Shafranov shift
d) highly unstable L-mode

~ 270% variation in normalized dT/dx = R/LT crit

Maximum g among all kq
vs R/LT for geometries a-d

normalized dT/dx : R/LT →

Critical R/LT
varies 270%

d)

a)

b)
c)

Max g among all kq (for R/LT =20)
vs Fp for geometries a-d

Critical Fp
varies 5%

Fp = normalized density gradient

d)

a)
b)
c)

Again: factors that strongly influence the free energy dynamics don’t change the consequence of the Flux Constraint bound

The same phyiscs considerations apply 
to stellarator geometries

• W7X (Max J)
• NCSX (Quasi sym)

Analytic
bound 

from FC

Maximum g among all kq vs Fp

Fp = normalized density gradient



We have considered other large variations in parameters: previous behavior is found to be “universal”

Vary  Ti/Te from ¼ to 4 

Ti/Te=4

Maximum g among all kq vs Fp

normalized density gradient Fp

Analytic
bound 

from FC
Ti/Te=1

Ti/Te= ½ 

Ti/Te=2

Ti/Te= ¼  

Ti/Te=4
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• This changes critical dT/dx -
by ~ 400%, beacuse:

• Ti/Te has a strong effect upon 
the free energy equation

• It changes the relaitve size of the 
energetically stabilizing adiabatic 
electron term ~ef/Te

• But adiabatic electrons have 
no charge flux

so the FC is unaffected by  Ti/Te

Ans so, the Fp bound is 
unaffected by Ti/Te

And what do simulations say?

The critical 𝑭𝒑 is always close to the 
analytical FC bound (varies ~4%)



We have considered  other large variations in parameters: previous behavior is found to be “universal”

Vary  Ti/Te from ¼ to 4 

Ti/Te=4

Maximum g among all kq vs Fp

normalized density gradient Fp

Analytic
bound 

from FC
Ti/Te=1

Ti/Te= ½ 

Ti/Te=2

Ti/Te= ¼  

Ti/Te=4
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• This changes critical dT/dx -
by ~ 400%, beacuse:

• Ti/Te has a strong effect upon 
the free energy equation

• it changes the relaitve size of 
the stabilizing adiabatic electron 
term ~ef/Te

• But adiabatic electrons have 
no charge flux

so the FC is unaffected by  Ti/Te

• Varying the density gradient:

The critical 𝑭𝒑 is always close to the 
analytical FC bound (varies ~4%)

• All cases we have examined with 
steep gradients show similar 
behavior
• Many diverse geometries and parameters

1) The insolubility of the flux constraint 
is the underlying reason for 
stabilization of the ITGae by density 
gradients

2) This introduces a remarkable 
universality of behavior in extremely 
diverse cases, largely regardless of 
the free energy considerations

3) The behavior of the gyrokinietc 
system is reminiscent to other 
physical systems with many degrees 
of freedom: 

The system “finds a way” to access free 
energy unless a “hard constraint” 

prevents it- here, the flux constraint
and

if so, it “finds a way” to approach the 
boundary of the hard constraint       

rather closely



• Near Fp ~ 0.6, 

• In the cases above, the instabilites near Fp ~ 0.6  all  had:   𝑘𝜌% ≳ 1

• BUT: strong nonlinear heat fluxes are dominated by modes 𝑘𝜌% ≪ 1

• Nonlinear results follow a more restrictive criterion for low k modes, 
which we’ll derive next 

• So nonlinear simulations also have a “universal” behavior, like the 
previous linear results- but the “Fp bound” is different from 0.6

The flux constraint is more restictive for low k modes- which are the most 
relevant ones for NONLINEAR heat fluxes



• Near Fp ~ 0.6, 

• For low k modes the approximte analytic 
bound is Fp ~ 0.53
• And this low k bound depends on parameters 

such as impurity fraction, and their gradients

• A wide range of nonlinear cases follow this 
(different geometries, different gradients, 
different Ti/Te ) (Here Zeff=1)

• This is especially apparent if the results are 
normalized to unity at Fp =0

The analytic flux constraint for low k modes is more 
relevant for NONLINEAR heat fluxes
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Simulation heat flux for 
various geometries and various  Ti/Te



• Solubility condition for Fp now depends on 𝒌6𝝆𝒊
• Arises from gyro-averaging effects

• Instability can reach higher Fp for higher 𝒌6𝝆𝒊

The low k modes that dominate the heat flux go 
stable for ⁄𝟏 𝟑 ≤ 𝑭𝒑 ≲ 𝟎. 𝟓𝟑

(Many experimental TBs have Fp in roughly this range) 

• Remarkable demonstration that the FC is 
controlling simulations: 

linear eigenmode shape changes to stay in the 
soluble region as Fp is increased.....
The role of 𝒌- is played by an eigenfunction average of 𝒌-

Both linear simulations follow this curve

Analytical result: solubility condition for low k modes (An expansion of full equations in k)

Fp=1/3 Fp=0.53

SOLUBLE

INSOLUBLE

𝒌 6
𝝆 𝒊

Fp ->



• At Fp=0, the 
eigenfunction is 
concentrated in the bad 
curvature region
• VERY 

COMMONPLACE 

• Large changes in mode 
structure are needed to 
increase 𝒌# and stay in 
the SOLUBLE region

Precisely this change 
happens for 𝑭𝒑 > 𝟏/𝟑

Simulation eigenfunctions change their structure 
to increase 𝒌6𝝆𝒊 and stay in the SOLUBLE region

normanlized density gradient Fp

𝒌 +
𝝆 𝒊
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simulation kyri=0.2: 
eigenfunction
averaged 𝒌+𝝆𝒊

Last
unstable
point

SOLUBLE

INSOLUBLE

poloidal angle  q ->                  

Fp=0

Fp=0.28

Fp=0.38

Fp=0.43

Outboard midplane 
where curvature is “bad”

Cyclone base case geometry (+shaping) R/LT = 20  



The eigenfunctions change their structure to 
increase 𝒌6𝝆𝒊 and stay in the SOLUBLE region

normanlized density gradient Fp

𝒌 +
𝝆 𝒊
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ve
simulation
eigenfunction
averaged 𝒌+𝝆𝒊

Last
unstable
point

SOLUBLE(stable)

INSOLUBLE

Outboard midplane 
where curvature is “bad”

poloidal angle  q ->                  

Fp=0

Fp=0.28

Fp=0.38

Fp=0.43

• At Fp=0, the 
eigenfunction is 
concentrated in the bad 
curvature region
• VERY 

COMMONPLACE 

• Large changes in mode 
structure are needed to 
increase 𝒌# and stay in 
the SOLUBLE region

Precisely this change 
happens for 𝑭𝒑 > 𝟏/𝟑

The mode becomes 
stable near the boundary



low k modes always have considerable changes to stay above the analytic FC curve 
when 𝐹! > 1/3

• Shown for kyri=0.2: Details of the eignefunction evolution differ on a case by case basis, but the solubility curve is respected 

• Du eo 

Such changes happen generically for different geometry and R/LT

Stable
Stable

ITB params (R/LT=20 𝑠̂=-1 a=3) pedestal params (R/LT=50 a=6  𝑠̂=0.8 ) Wendelstein 7X 



• Near Fp ~ 0.6, 

• The generic bahavior is for the 
eigenfunction to change and 
increase the average 𝒌'𝝆𝒊 as Fp is 
increased
• Not realized previously (to our 

knowledge)
• Plots show that the increase 

follows the analytic curve derived 
from the FC

A tremendous number of geometries have been tested, and show this behavior

This is striking evidence that 
the FC is controlling the 

eigenfuncion 
as Fp approaches the analytic limit 



Nonlinear ITGae follow this boundary too

• Near Fp ~ 0.6, 

Simulations for diverse geometries and gradients show that the heat flux goes 
down by ~ 2 orders of magnitude as the analytic Fp boundary in approached......

• Near Fp ~ 0.6, 

• Define: max value of Fp for all 𝒌6𝝆𝒊
= a stability boundary for all low k 
modes
• We would expect that nonlinear 

heat fluxes become small as this 
value is approached since 
• 𝒌-becomes large, so eddies are 

smaller
• 𝒌-becomes large, so nonlinear 

coupling to stable modes becomes 
stronger

• eventually the mode becomes stable
Max Fp
analytic



Nonlinear ITGae follow this boundary too

• Near Fp ~ 0.6, 

Simulations for diverse geometries and gradients show that the heat flux goes 
down by ~ 2 orders of magnitude as the analytic Fp boundary in approached......

• Near Fp ~ 0.6, 

• Define: max value of Fp for all 𝒌6𝝆𝒊
= a stability boundary for all low k 
modes
• We would expect that nonlinear 

heat fluxes become small as this 
value is approached since 
• 𝒌-becomes large, so eddies are 

smaller
• 𝒌-becomes large, so nonlinear 

coupling to stable modes becomes 
stronger

• eventually the mode becomes stable

JT-60U ITB case ?𝒔=-1  
strong negative shear

JET ITB case ?𝒔=-0.3
weak negative shear
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Nonlinear heat flux vs Fp for two ITB cases



Nonlinear runs for diverse cases: pedestal paramters too

• Near Fp ~ 0.6, 

For pedestal-like geometries as well, the heat flux goes down by ~ 2 orders 
of magnitude as the analytic Fp boundary in approached

• Near Fp ~ 0.6, 

• All pedestals have               
high a & large R/L
• But magnetic shear of 

pedestals varies a lot
• Three pedestal like cases: 
• 𝑠̂ = −0.5, 0.8 𝑎𝑛𝑑 2
• 𝛼 = 6 , ⁄𝑅 𝐿, = 50

𝑠̂ = −0.5
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analytic

𝑠̂ = 0.8

𝑠̂ = 2.0

Nonlinear heat flux vs Fp



• Near Fp ~ 0.6, 

• Z and their gradients are often significant in TBs:

The higher Z tendency to produce larger charge flux implies:
density gradients must be lower to satisfy the FC

Stronger impurity gradients than deuterium gradients accentuate 
such effects

Stronger impurity gradients than deuterium or electrons 
are often found experimentally in TBs

Impurity (Z) charge fluxes make the FC more restrictive (NOT a dilution effect) 

Zeff=1Zeff=2Zeff=2
(Z grad
3 x stronger 
than D)

Max Fp
analytic

Max Fp
analytic

Max Fp
analytic

Impurities lower the analytic max Fp

Simulations follow the Z modified solubility 
boundary like the previous results with Zeff=1

Impurities typically contribute little to the free energy (mainly 
diluting deuterium free energy),

But due to their higher Z, they contribute disproportionately to 
the total charge flux



Nonlinear runs for diverse geometries follow the constraint boundary with Z: ITBs

• Near Fp ~ 0.6, 

• For the previous ITB 
geometries:
• the heat flux goes down by    

~2 orders of magnitude as 
the analytic Fp boundary in 
approached, and

NONLINEAR heat flux follows 
the impurity modified FC 

solubility condition
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Nonlinear runs for diverse geometries follow the constraint boundary with Z: pedestals
• Near Fp ~ 0.6, 

• For three different pedestal 
geometries
• the heat flux goes down by    

~2 orders of magnitude as 
the analytic Fp boundary in 
approached
NONLINEAR heat flux 
follows the impurity 

modified FC solubility 
condition
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• Near Fp ~ 0.6, 

Despite HUGE parameter 
differences between pedestal and 
ITB cases, they all follow the same 

analytic constraint bounds



The Ti/Te can severely alter the energetics, but not the FC solubility. The nonlinear 
simulations reflect this fundamental physical difference between Ti/Te and impurities
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Yet another demonstration that the gyrokinetic system has TWO DISPARATE 
controlling dynamcs: free energy drive and the flux constriant



The Ti/Te can severely alter the energetics, but not the FC solubility. The nonlinear 
simulations reflect this fundamental physical difference between Ti/Te and impurities
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• Near Fp ~ 0.6, 

• The electrostatic part of the heat flux behaves similarly to the ITGae for both pedestal and ITB cases: 

Flux drops as the ITGae boundary is approached , BUT, it doesn’t drop as much or as fast

Simulations with full electrons and electromagnetic effects for TB cases 
behave similarly to ITGae, but the electrons reduce the stabilization

Nonlinear heat flux vs Fp(pedestal case) Nonlinear heat flux vs Fp (ITB case)

Max Fp
analytic

Max Fp
analytic

Max Fp
analytic

Max Fp
analytic

Max Fp
analytic

full e-1

adiab. e-1

Color  scheme:
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Zeff=2 (Z grad 
3 x stronger than D)

full e-1

adiab. e-1

Color  scheme:
Zeff=1       Zeff=2



• Near Fp ~ 0.6, 

• The electrostatic part of the heat flux behaves similarly to the ITGae for both pedestal and ITB cases: 

Flux drops as the ITGae boundary is approached , BUT, it doesn’t drop as much or as fast

Simulations with full electrons and electromagnetic effects for TB cases 
behave similarly to ITGae, but the electrons reduce the stabilization
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• Near Fp ~ 0.6, 

• Again, this is a new way to understand instabilities in TBs

• Conventional understanding of this regime has focused on differences in the properties of 
ITG and TEM modes

• In actual TBs, however, the fluctuations have major components of each of these 
simultaneously

The present analysis is not in terms of two mode types (ITG or TEM), 
but in terms of two fundamantal equations

• The Free-Energy balance equation and the charge Flux Constraint
• These equations apply to ALL fluctuations
• It is not necessary to (futiley) attempt to distinguish whether a fluctuation is primarily an ITG or a TEM
• Rather, one only has to determine when the solubility of the flux constraint prevents an instability

Analysis of TB cases with full electrons finds: again, the flux constraint controls stability



• Near Fp ~ 0.6, 

• Based upon a LARGE amount of simulations and analysis:

• In the TB regime, the electrons are destabilizing because they contribute a charge flux that makes the FC easier to 
satisfy

Electron charge flux has the opposite effect to the impurity charge flux because the electron charge is negative;         
so typical electron fluxes make it easier to satisfy the constriant, impurities make it harder

• Electrons reduce the stabilization from the FC=> larger Fp is required for stability, or, stability may not result
When strong Ti gradients are present, stability of coupled ITG/TEM requires that the electron charge flux is low, 

and this requires that the electrons have, primarily, a Boltzmann response (adiabatic)
Phase space averaging, as in statistical mechanics, leads to such an electron response, 

including for the trapped particles

• For tokamak TBs, this typically requires sufficiently low or negative magnetic shear, or large enough Shafranov shift
• But the general physics of phase space averaging can arise in other circumstances, e.g., some stellarator geometries 

• Previous explanations of regimes like this have been interpreted as the energetically stabilizing effects of orbit 
average “good” curvature for trapped electrons
However, just as for the ITGae : energetic effects are not the dominant determant of stability with increasing Fp

The flux constriant is the controlling physics even with electron dynamics

Summary of extensive analysis of TB cases with full electrons:



Approximate electron “adiabaticity”: 
expected from basic statistical mechanics…

Approximate electron “adiabaticity” of ITG/TEM with negative shear is a specific instance of the very general and 
robust dynamics of phase space averaging in statistical mechanics

Such general dynamics leads to TBs in extremely different geometries, such as stellarators (e.g. W7X and NCSX), where 
the details of the geometry are different but the same fundamental statistical mechanics operates

• “Adiabatic”, in the ITG/TEM context, means a Boltzmann 
distribution ~ 𝑒-(

!
"/0"-12)/'

• Basic statistical mechanics: distribution functions 
become Boltzmann when particles have time to sample 
all of phase space uniformly. 

• But: trapped electrons are very constrained in the phase region they can sample. 

Nonetheless, if the width of the trapped orbit is much wider than the eigenfunction the region sampled becomes large enough so 
the response approaches Boltzmann

• Simulations show that when the shear becomes more negative, the eigenfunction becomes narrower in the poloidal angle 
• Thus, negative shear and/or high Shafronov shift leads to approximate “adiabaticity” by phase space averaging

Electrons are very fast and “try” to do this.

ITB Eigenfunction and trapped orbit extent

Typical trapped orbit extent

poloidal angle 



• The 2D plot will be the real frequency wr and growth rate g

• Use the mean field theory (Simplified Kinetic Model SKiM )

• It gives tractable closed form expressions for the energy balance and Flux Constraint as a 
function of complex w

• We then plot the energy balance curve and flux balance curve in the complex w plane

• The actual eigenvalue w is given by the intersection of the Free energy and FC curves

This can be shown to be exactly equivalent to the usual dispersion relation

But these plots allow us to see the physical origin of the stabilization by disentangling two 
different physical effects: 

Free energy drive and flux constraint

We now make 2D plots of free energy balance and flux 
constraint for ITG/TEM instabilities



• When Fp is small, the Free energy curve primarily limits g

• As density gradients (Fp) increase
• Free energy curve: little change

• FC curve: HUGE change

• As Fp increases:
• The orange region of positive charge flux expands as the density 

gradient drives more ion flux

• The FC solution curve gets compressed by the expanding orange 
region

• Eventually FC is soluble only near g=0

• By increasing Fp even further, particle flux is everywhere 
positive (for g>0)

No instability is possible since FC cannot be satisfied

γ
ωr

Fp = 0

Fp = 0.17

Fp = 0.23

Fp = 0.29

Fp = 
0.33
Fp = 0.44

1st consider a typical case with adiabatic 
electrons 

Free 
energy eqn. satisfied

Flux 
Constraint satisfied: 

net charge flux = 0

Region of net charge 
flux>0

Region
net charge flux<0



• Energy curve: doesn’t change qualitatively because there is 
always a lot of free energy in the equilibrium

• The FC curve:

• As density gradient is increased, the region of outward flux 
increases

• As expected, density gradient is acting to drive a density flux, 
and increases it
• Orange region (Γ# > 0) grows

• White region (Γ# < 0) shrinks

• As density gradient grows, the flux balance curve has a 
solution only at low g
• A finely tailored velocity response is necessary to give no flux, 

requiring sharp resonances (g ~ 0) and a very limited range of 
frequencies w

• Eventually no solution with g > 0 is possible for Fp large 
enough – the region with g > 0 is all orange

γ
ωr

Fp = 0

Fp = 
0.17

Fp = 
0.23

Fp = 
0.29

Fp = 
0.33
Fp = 
0.44

Why do the curves evolve this way?

Free 
energy eqn. satisfied

Flux 
Constraint satisfied: 

net charge flux = 0

Region of net charge 
flux>0

Region
net charge flux<0



Stabilized by Fp Remains unstable with Fp

γ
ωr

γ
ωr

Fp = 0

Fp = 
0.29

Fp = 
0.38

Fp = 
0.44

Fp = 0.5

Fp = 0

Fp = 
0.29

Fp = 
0.38

Fp = 
0.44

Fp = 0.5

The curves with full electrons for a case with stabilization by Fp and a case that remains unstable

Free 
energy eqn. satisfied

Flux 
Constraint satisfied: 

net charge flux = 0

Region of net charge 
flux>0

Region
net charge flux<0

Generically: 
Cases with full 
electrons that 
becomes stable 
are like the 
adiabatic 
electron case: 
the FC enforces 
stability



Statistical mechanical concepts show why the Flux 
Constraint becomes insoluble at large dn/dx 𝜞𝒊 + 𝒁𝜞𝒁 = 𝜞𝒆 (Flux 

constraint with electrons and 
impurities)

If electrons a cloless flux:

Basic statistical mechanics: The FC has a solution until dn/dx  
becomes so large that 𝜞𝒊 is too large 

to be balanced by 𝜞𝒆

Electrons are destabiling while 
impurity ions are stabilizing because 

electrons have opposite charge to 
impurities 

A small 𝜞𝒆 from non-adiabatic 
electrons extends the unstable range 

to higher Fp than for the ITGae

⇒

Thermodynamic
forces

strongly tend to drive

Their 
corresponding 
thermodynamic

fluxes

⇒

⇒

In TBs, electrons are slightly non-adiabatic, they cause small 
electrons flux ( 𝜞𝒆):

Increasing  dn/dx increases 𝜞𝒊 more than 𝜞𝒆 , 
due to nearly Boltzmann e-1 but 𝜞𝒆 is significant

The small 𝜞𝒆 makes it easier to balance the FC

Simulation trends follow from the FC together with fundamental statistical mechanics



Now lets turn to the details of this....



• Near Fp ~ 0.6, 

• Either are potentially important
• Each is controlled by different physics
• If either gives enough non-adiabatic response, it can destabilize the mode as Fp increases

That is: a value of Fp that “would have” stabilized ITGae no longer results in stability

1) Passing electrons
• Passing electrons move rapidly and “try” to average over phase space

• Then the ϕ from the instability would produces a Boltzman response ( 𝑛~𝑒 ⁄%& ' ) as in statistical mechanics 
• This is the dynamic response to parallel forces  𝐸∥ = ∇∥ϕ when “fast” electrons can equilibrate with the perturbation 
• Called “adiabatic” response in gyrokinetics ( δ𝑛~ ⁄𝛿𝜙 𝑒 𝑇 )

• BUT, for the long wavelength part of ϕ , there can be strong departures from this  (when 𝑘∥ ~ ⁄𝜔 𝑣∥% )
• Fortunately, even at such low 𝑘∥, inductive effects can potentially shield out the 𝐸∥
• This shielding greatly reduces the non-adiabatic electron response from these scales
• At typical be, the non-adiabatic response from passing electrons is usually less than from trapped electrons

2) Trapped electrons
• Previous explanations of regimes like this have been interpreted as the energetically stabilizing effects of orbit average “good” curvature for 

trapped electrons  ( “drift direction” )
• However, as we have seen: energetic effects are not the main determant of stability with increasing Fp: the flux constriant is
• This remains true with trapped electrons
• The most important parameter is not the trapped electron average curvature, but rather, the degree of the trapped electron phase space 

averaging (just like the passing electrons)

Two sources of non-adiabtic electron response: passing & trapped

Inductive shielding: roughly when 
magnetic skin depth is shorter than 
the mode scale

Scales as ~ (𝑘)𝜆*+#,)-.

~(𝑘)𝜌*)-. 𝛽%
⁄. / ( ⁄𝑚# 𝑚%) ⁄. /

Shielding increases with 𝜷𝒆/𝑘)/ 𝜌*/



• Near Fp ~ 0.6, 

• Perform simulations with neglible trapped particles (aspect ratio 𝜖 = 0)
• Consider geometries that are usually expected to produce weak ITG/TEM (negative magnetic shear and/or high a)
• At fixed geometry parameters (e.g. 𝑠̂, 𝛼, 𝑞), artificially vary be (magnetic shielding) from no shielding to the actual 

value for the equilibrium 𝛼

First consider only the passing electron response
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Fp

JET ITB case Pedestal case

When there is realisitic magnetic shielding, the mode stability is like the ITGae : non-adaibatic passing e-1 effects are small 



• Near Fp ~ 0.6, 

• Consider cases with Fp=0.5, which “would be” stable, except for non-adiabatic response:

Further simulations with only passing electrons (𝜖 = 0)

• Near Fp ~ 0.6, 

• Growth rates for many different 
geometries drop strongly as be is 
artificially varied between 0 and 
the actual value consistent with a

• Near Fp ~ 0.6, 

• Consider simulations of large number of geometries where be is the actual value
• 𝑠̂ ∈ −1 𝑡𝑜 + 1 , 𝛼 ∈ 0.2 𝑡𝑜 6 , q∈ 3 𝑡𝑜 6

For very diverse 
geometries:

Low enough 
𝑘+𝜆!5%) always 
leads to low g

(g can be low even 
without skin 
depth shielding, if 
the 𝑘∥𝑣78 # is large 
enough)



• Near Fp ~ 0.6, 

• Sufficient be renders this effect small (typical be is enough)
• They can also be small if the 𝑘∥𝑣01 2 is large enough 

Conclusions: passing electrons can be a significant non-adiabatic effect, but:



• Near Fp ~ 0.6, 

• These are usually the dominant non-adiabatic electron contributor

• To understand these effects, we begin by adding trapped electrons to the mean 
field theory (SKiM)

Now consider trapped electrons



The mean field theory with trapped electrons

• The eigenfunction averaged quantities for electrons now 
involve trapped orbit averages (“bounce averages”)

• These expression be derived by the same methodology 
as for described in earlier presentations (SKiM)
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Ion non-adiabatic 
response

e-1 non-adiabatic 
response

Eigenfunction averaged coupling to trapped electrons: 
heuristically, the “effective” trapped fraction.

The solid angle dWv is in velocity space (pitch angle with 
magnetic field)

< 𝑓,ST+>UVWU.=	
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This becomes 
small when        
< 𝜙 >EFG)$#;

becomes much 
smaller than 𝜙;, 
which often 
happens for TB 
parameters

This is the over-all strength of the 
non-adiabatic trapped e-1 response

Eigenfunction averaged bounce averaged 
curvature drift: heuristically, the average 
curvature for trapped e-1

< 𝜔LM >MNOMP

=
∫ 𝑑𝑙 𝑑ΩQ < 𝜔LM >RSTPUM < 𝜙 >RSTPUMV

∫ 𝑑𝑙 𝑑ΩQ < 𝜙 >RSTPUMV

This affects the energetics of the response

This gives the energetics of the response: orbit 
averaged curvature weighted by the strength 
of coupling for that orbit ~ < 𝜙 >EFG)$#

;



The conventional physical picture of stabilization of the ITG/TEM is actually not operative

• Conventionally, negative bounce averaged curvature is thought to stabilize the 
TEM alone, and density gradients stabilize the ITG

HOWEVER, actually:

• Negative curvature stabilizes the TEM alone but NOT the ITG/TEM:
• The trapped electron response allows the instability to satisfy the FC by creating a 
Γ#even if bounce averaged electron curvature is stabilizing

𝑞%Γ% + 𝑞#Γ# = 0

• Creating the requisite Γ# to allow intability does take some expenditure of free energy
• But for typical parameters: the ions can supply much more that this amount of energy, 

so  g is only reduced modestly

• So actually, stability results only by reducing tha amount of the non-
adiabatic electron response (small < 𝑓&'()>*+,*-), NOT by making 
the electron curvature negative (< 𝜔.* >*+,*- <0) 



• Near Fp ~ 0.6, 

• Consider a case with strong coupling to trapped 
electrons < 𝑓,ST+>UVWU. ~ 0.5
• Also consider Fp=0.5: would be stable except for 

trapped electrons
• Vary remaining free parameters of SKiM in a 

range around typical eigenfunction values
• Making the bounce averaged curvature  

sufficiently negative stabilizes the TEM
• The TEM is when we set dTi/dx set to zero

• But it does not stabilize the ITG/TEM (including 
dTi/dx) , even when electron curvature is FAR 
more negative than in actual eigenfunctions!

Lets first see this in the generic behavior in SKiM: stabilizing electron curvature stabilizes 
TEM, but NOT ITG/TEM

Growth rate in SKiM verses electron curvature if 
< 𝑓'HI" >#%J#) = 0.5     (𝑘+𝜌! = .35) 

(i.e., if trapped electrons couple well to the eigenfunction)

multiplier times typical < 𝜔&# >#%J#) found in TB cases 



• Near Fp ~ 0.6, 

• Consider a case with strong coupling to trapped 
electrons < 𝑓,ST+>UVWU. ~ 0.5
• Also consider Fp=0.5: would be stable except for 

trapped electrons
• Vary remaining free parameters of SKiM in a 

range around typical eigenfunction values
• Making the bounce averaged curvature  

sufficiently negative stabilizes the TEM
• The TEM is when we set dTi/dx set to zero

• But it does not stabilize the ITG/TEM (including 
dTi/dx) , even when electron curvature is FAR 
more negative than in actual eigenfunctions!

Lets first see this in the generic behavior in SKiM: stabilizing electron curvature stabilizes 
TEM, but NOT ITG/TEM

Growth rate in SKiM verses electron curvature if 
< 𝑓'HI" >#%J#) = 0.5     (𝑘+𝜌! = .35) 

(i.e., if trapped electrons couple well to the eigenfunction)

multiplier times typical < 𝜔&# >#%J#) found in TB cases 



• Near Fp ~ 0.6, 

• Again take Fp = 0.5: where ITGae is stable, so non-adiabatic electrons are necessary for instability
• Evaluate the SKiM coefficients for a typical ITB case, and vary electron parameters to find their 

sensitivity
• Stabilization is achieved by small reductions in < 𝑓&'()>*+,*-

According to SKiM: the trapped electron parameter that gives strong stabilization with Fp 
is small < 𝑓&'() >*+,*- NOT stabilizing electron curvature (when strong Ti gradients are present)

• This characteristic is generic in SKiM. We’ll see:
• It’s consistent with simulations
• It’s consistent with the character of the FC



• Near Fp ~ 0.6, 

• Again take Fp = 0.5: where ITGae is stable, so non-adiabatic electrons are necessary for instability
• Evaluate the SKiM coefficients for a typical ITB case, and vary electron parameters to find their 

sensitivity
• Stabilization is achieved by small reductions in < 𝑓&'()>*+,*- NOT stabilizing curvature

According to SKiM: the trapped electron parameter that gives strong stabilization with Fp 
is small < 𝑓&'() >*+,*- NOT stabilizing electron curvature (when strong Ti gradients are present)

• This characteristic is generic in SKiM. 
• It’s also consistent with simulations
• It’s also consistent with the character of the FC



• Near Fp ~ 0.6, 

• The growth rates when the electron 
curvature is stabilizing are indeed smaller, 
but:
• The requisite < 𝑓WXYZ>MNOMP for the strong 

stability needed for TBs is not strongly affected by 
whether the electron curvature < 𝜔LM>MNOMP is 
stabilizing or destabilizing

The magnitude of the non-adiabitic response < 𝑓;<=>>2%?2@ strongly affects stability  

The Solubility of the FC for strong stabilization is more 
affected by the magnitude of the trapped electron 
response < 𝑓'HI" >#%J#) than by the curvature
< 𝜔&# >#%J#) (which mainly impacts energetic)

As with the ITGae results previously, the solubiity of the 
FC is controlling stability, not energetic factors 

Growth rate verses electron curvature if
(i.e., if trapped electrons couple well to the eigenfunction)

𝑡𝑦𝑝𝑖𝑐𝑎𝑙 < 𝜔&#>#%J#) >0

< 𝜔&#>#%J#)
multiplied	by		-1	



• Near Fp ~ 0.6, 

• We choose Fp=0.5 and 𝑘"𝜌# = 0.35, where the mode would be stable except for non-
adiabatic electrons

• We vary magnetic shear 𝑠̂ and a over a wide range
• 𝑠̂ ∈ −1 𝑡𝑜 + 1 𝛼 ∈ 0.2 𝑡𝑜 6
• This includes values 

• usually associated with TBs 
• not associated with TBs 
• intermediate values 

• We also vary
• ⁄𝑟 𝑎 ∈ { 0.15 𝑡𝑜 1} for (R/a=3)

We evaluate the averages < 𝑓$%&!>'()'* and < 𝜔+' >'()'*
found from simulation eigenfunctions 

to find out which is associated with strong stabilization

Now we consider stability in simulations with full electrons (& electrmagnetic)



Simulations results follow the same pattern as SKiM
• Near Fp ~ 0.6, 

• GENE growth rates: clear association with < 𝑓&'()>*+,*- and weak association with < 𝜔.* >*+,*-
• Low g requires low < 𝑓,ST+>UVWU.
• But low g is not associated with < 𝜔!U >UVWU.that is appreciably different from high g



• Near Fp ~ 0.6, 

• We can almost remove passing electron effects by considering the subset of cases where 𝜆![NP𝑘-is small (<0.2)

• Then trapped electrons are the dominant response so the relationship with < 𝑓WXYZ>MNOMP becomes clear

• There is still little relationship with < 𝜔LM >MNOMP
• WIth this 

Strong dependence on < 𝑓;<=>>2%?2@ becomes clear when we control for the passing 
electron response



• From the simulations:  < 𝑓WXYZ>MNOMP ~ (1 + 0.085 𝑠̂ − 𝛼 ) [ \
]^\

]]/V

• So < 𝑓WXYZ>MNOMP is reduced by negaitve 𝑠̂, high a.  (and small e)

• Thus, stability is associated with negative 𝑠̂ and high a, as in experiments and simulations of them
• Also, TBs are more difficult to form at larger major radius, as is also found in experiments



Future work will be pursued as part of our new company !!!!
Mike Kotschenreuther, Swadesh Mahajan, David Hatch, Romi Mahajan

Pursuing Improved confinement sceanarios 
Using density sources and magnetic geometry to create TBs

Novel low recycling divertor design called the Super-XT (pat. pending)
Enables exceptional confinement
Low edge n, high edge T
The core can be sustained with high Fp => extremely high confinement

Using the Super-XT for extremely high b and confinement in attractive magnetic geometries (pat. pending)

Several patents pending, more to follow very soon!

( Exothermic Fusion! )



• We have shown that TB can arise without velocity shear because of a basic  
constraint in the gyrokinetic system: fluctuation induced transport cannot lead to 
a net charge flux
• A new conceptual approach to analyze TBs has been developed: based upon 

constrained statistical mechanics
• By focusing attention on the flux constraint, the conditions that allow TBs can be 

greatly clarified
• Linear and nonlinear gyrokinetic simulations follow bounds on the solubility of the 

flux constaint
• As one would expect, various applications follow from this, which are currently 

under development

Conclusions



In summary: the unique feature of Magnetic Confinement (MC) that 
can prevent the usual behavior of MANY systems where
stronger thermodynamic forces => stronger thermodynamic fluxes
Thermodynamic fluxes appear in BOTH free energy 
equation (as usual) and in the Flux Constraint (unique MC)

• ITG/TEM must be 

• Unique to MC:   𝜞𝒊 + 𝒁𝜞𝒁 = 𝜞𝒆
THIS CONSTRAINT IS IN TERMS OF THERMODYNAMIC FLUXES: the G

• As usual, the G are strongly affected by the corresponding thermodynamic forces: 
density gradients

Density gradients thus have a DUAL NATURE: as thermdynamic forces that affect 
BOTH the free energy equation, and ALSO, G in the flux constraint

• This DUAL NATURE unique to MC leads to unique consequences: under the “right” 
circumstances, the thermodynamic forces makes the FC INSOLUBLE for fluctuations. 

• This prevents instabilites from arising to access equilibrium free energy, leading to 
steep gradients without high fluxes: TBs without velocity shear

JT-60U ITB DIII-D pedestal

JET-ILW pedestals

W7X core
profiles

Particle fluxes (a thermodynamic flux) appear in BOTH free energy 
equation (as is usual) and in the Flux Constraint (unique to MC)



How does the Flux Constraint (FC) prevent strong ITG/TEM?

There are conditions where the flux constraint cannot be satisfied for ANY fluctuation with g>0 
(whether or not the fluctuation satisfies Maxwell’s equations)

Any instability that satisfies Maxwell’s equations must satisfy the flux constriant, so

Bounds on the flux constraint are hugely simpler to obtain than for the full dynamics, because 

Simulations with many degrees of freedom respect these bounds. 
In fact, they apparently “find a way” to approach them  rather closely

If the flux constraint is not soluble for any fluctuation,
NO instability is possible

(and we’ll find nonlinear results follow the linear)

1) The FC is only a part of the dynamcs (much dynamics doesn’t need to be considered)
2) Considering fluctuations without the need to obey Maxwell’s equations is greatly simplifying



Recall: flux constraint 
for the ITGae cannot be 
satisfied if:

Testing the analytic result with simulations for ITG with adiabatic 
electrons ( ITGae ) 𝐹" ≥ 0.6

• For various TB-like geometries and paramters, FIX a large ion Temperture gradient (R/LT ~ 10-80) and increase density 
gradient (R/Ln)

• Well known: with adiabatic electrons, density gradients can’t drive an instability, because the density gradient can’t be 
relaxed
• This is an energetic argument that free energy in density gradients is not accessible with adiabatic electrons

• It is also well known that there can be some linear stability threshold in hi = Ln/LT –
WHAT fundamantal dynamic is preventing the system with MANY degrees of freedom 

from accessing the strong T gradient THAT IS ALWAYS PRESENT?

Is it merely a quirk of some linear dispersion relations, or is there a more basic reason ?

Simulation proceedure to test this:  start with linear instabilites

BUT the constant dT/dx is always a strong free energy source in the simulations as dn/dx increases

There is no energetic reason why the large temperature gradient can’t drive instabilites-
quit the contrary, strong instabilites would be expected to be present based upon typical behavior in other physical systems

Yes, the basic reason is the solubility of the FC
and because of this origin, there is a striking universality of behavior



First analytic result: for the ITG with adiabatic electrons ( ITGae )
JT-60U ITB

Fraction of the density gradient
In the pressure gradient𝐹+ =

, ⁄!. !/
⁄! (.,) !/

=Define a normalized 
density gradient :

DIII-D pedestal

𝑭𝒑 ≥ 𝟎. 𝟔The flux constraint for the ITGae cannot be satisfied if:

• For various TB-like geometries and paramters, FIX a large Temperture gradient (R/LT ~ 10-80) and increase 
density gradient (R/Ln)

• With adiabatic electrons, density gradients can’t drive an instability, BUT the constant dT/dx is always a 
strong free energy source even as dn/dx increases

• Well known that there can be some linear stability threshold in hi = Ln/LT –
But, WHAT fundamantal dynamic is preventing the system with MANY degrees of freedom 

from accessing the strong T gradient THAT IS ALWAYS PRESENT?

Is it merely a quirk of some linear dispersion relations, or is there a more basic reason ?

Simulation proceedure to test this: we’ll start with linear instabilites

Contrast the simplicity of this criterion to the complexity of a 
dispersion relation that can’t be solved analytically!!



• Near Fp ~ 0.6, 

• Sometimes the Dmixing can behave similarly to the ITGae for both pedestal and ITB cases: 

Simulations with full electrons and electromagnetic effects for TB cases 
behave similarly to ITGae, but the electrons reduce the stabilization

Max Fp
analytic

Max Fp
analytic

Max Fp
analytic

Max Fp
analytic

Max Fp
analytic

Nonlinear heat flux vs Fp (ITB case)Nonlinear heat flux vs Fp(pedestal case)

Max Fp
analytic

full e-1

adiab. e-1

Color  scheme:
Zeff=1       Zeff=2

Zeff=2 (Z grad 
3 x stronger than D)



We have developed a technique to reveal dynamics that 
is much more powerful than a linear dispersion relation
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𝑎𝑟
𝑦
𝑓𝑟
𝑒𝑞
𝑢𝑒
𝑛𝑐
𝑦
𝛾

x

A plot, in the upper half plane of (w,g)
of the Free-Energy equation

and the Flux Constraint
for a TB case with weak ITG/TEM• When non-adiabatic electrons are included, robust 

or simple analytic results are difficult
• To verify the crucial importance of the constraint, we 

use SKiM
• Make a plot in the omega upper half plane of:

1) The (w,g) that solve the free energy balance 
equation

2) The (w,g) that solve the Flux constraint
3) The eigenfrequency is at the intersection 

It is evident that the Flux Constraint curve is 
responsible for forcing the growth rate to be small

• This is true for a very large range of TB parameters 
when gradients are large, including specific 
experimental cases



• Near Fp ~ 0.6, 

• In actual conditions, the modes have important ITG drive and important contributions from 
electron dynamics
• A mode that is 51% TEM and 49% ITG can hardly be understood as either a TEM mode or an 

ITG mode- its properties are some mixture of both, and it behavior cannot be relaibly 
“undertood” from the properties of either

• The Free-Energy balance equation and FC are common to all modes, irrespective of whether 
they are ITG, TEM, or any combination
• Distinguishing a mode as ”mainly ITG” or “mainly TEM” is irrelevant to the analysis
• We regard this as a good thing, since the actual mode cannot realistically be considered as 

one or the other
• I note: in my interaction with others, many regard the distinct mode types of ITG and TEM as 

having such a central role in the dynamics that they are aghast at the suggestion that an 
appropriate understand is either possible or desireable without having to make these 
distinctions. We disagree. 

Analysis of TB cases with full electrons finds: again, the flux constraint controls stability


